

# Оптимизация прочности каркаса салона автомобиля при фронтальном ударе с использованием методов линейной статики

Овчинников В.А., ООО Ладуга (www.laduga.ru) Кирсанов А.Р.,Хализов С.К.,Курдюк С.А.,Иванов Е.О. (ОАО АВТОВАЗ)

143000, г. Одинцово

Московская область

Тел.: (495) 991-88-97

E-mail: laduga@laduga.com



## **Испытания по фронтальному удару Требования ЕС/ООН**

| Правило     | Скорость | Барьер        |
|-------------|----------|---------------|
| EuroNCAP    | 64 км/ч  | деформируемый |
| Правило R94 | 56 км/ч  | деформируемый |

#### Критерии по удару:

- Требования по кузову (передняя стойка, передний щиток)
- Травмирование манекена (водителя и пассажира)
- Удерживающие системы (требования к ремню безопасности)
- Рулевое управление (перемещение руля)
- Педали (перемещение педалей)
- Интерьер (приборная панель, сиденья)





## Критерии оптимизации кузова

- Требования по фронтальному удару (сильнонелинейный расчет)
- Требования по боковому удару (сильнонелинейный расчет)
- Требования по удару сзади (сильнонелинейный расчет)
- Требования по наезду на пешехода (сильнонелинейный расчет)
- Требования по удару на малых скоростях (сильнонелинейный расчет)
- Требования по жесткости (линейный статический расчет)
- Требования по вибрациям (модальный анализ)



### Стандартная оптимизация

#### Линейные расчеты

Полноразмерная КЭ модель (400000-1000000 КЭ)

- Статика и динамика
- Модальный анализ

#### Сильнонелинейные расчеты

Сокращенная КЭ модель (10000-50000 КЭ)

- Моделирование краш-теста

#### Недостатки

- использование в процессе оптимизации нескольких разных моделей
- грубое упрощение модели кузова, применяемой для расчета на удар
- использование разнородных средств анализа



## Задача проектирования силовой структуры для фронтального удара

Элементы передка. Функция:

- максимальное поглощение энергии удара при заданных деформациях

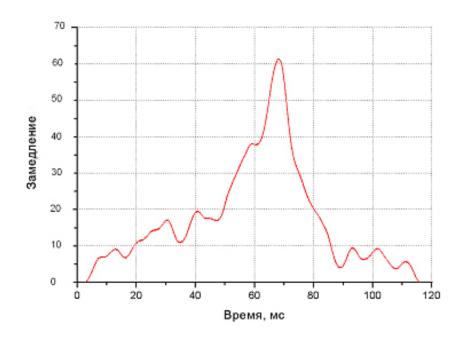
Салон автомобиля. Функция в идеале:

- отсутствие пластических деформаций
- сохранение исходной геометрии при заданных нагрузках

Разделение функций позволяет решать задачу проектирования салона независимо от задачи проектирования элементов передка



## Идеи предлагаемого подхода

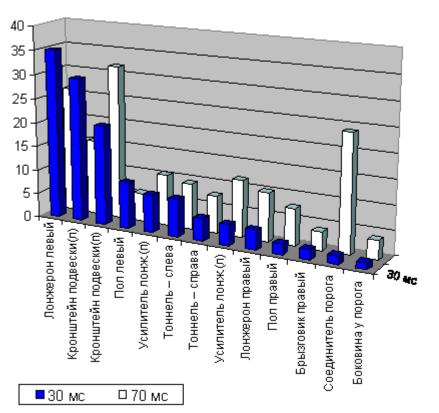

- Использование единой полноразмерной КЭ модели автомобиля
- Однократное моделирование полномасштабного удара
- Расчет силовых потоков, нагружающих салон во время удара
- Оптимизация структуры салона методами линейной статики

### Корректность решения определяется моментами

- Определение моментов времени, характеризующихся максимальными нагрузками
- Корректное определение величины расчетных нагрузок
- Разработка адекватной расчетной схемы



## Определение моментов времени, характеризующихся максимальными нагрузками




#### Пики на

- 12-й мс
- 30-й мс (17 м/с<sup>2</sup>)
- 40-й мс
- 58-й мс
- 70-й мс (61 м/c<sup>2</sup>)



### Определение величины расчетных нагрузок



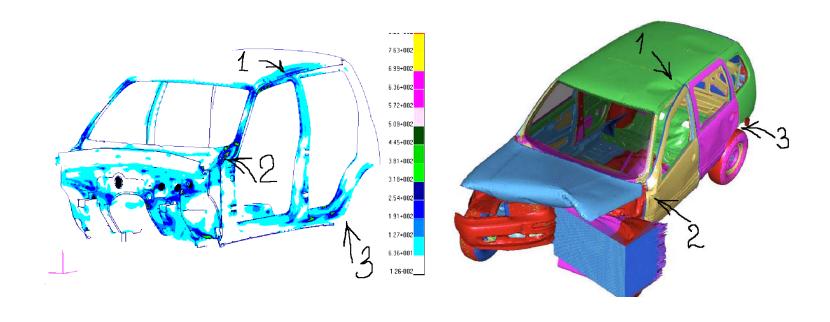
Суммарное усилие, действующее на салон в ј-й момент времени

$$Ps_{j} = \sum_{i} F_{i,j}, i = 1, n$$

- -30-я мс (Ps = 148.7 кH)
- -70-й мс (Ps = 186.7 кH)

**Необходимо учитывать все моменты времени с пиковыми** значениями ускорений




## Разработка расчетной схемы



Рассчитывается распределение инерционных сил, уравновешивающих ударные нагрузки, приложенные к салону автомобиля.



## Сравнение результатов статического расчета и моделирования удара



Статический расчет

Расчет на удар



## Постановка задачи оптимизации

**Цель - снижение величины напряжений, вызывающих локальную потерю устойчивости** 

$$\min(\sigma_{\max})$$
,

$$M \ge (\sum_k m_k, k = 1, 1),$$

$$t_{k,i} = t_k, i = \overline{1,n},$$

$$T_{\min} \le t_k \le T_{\max}, k = \overline{1, m},$$

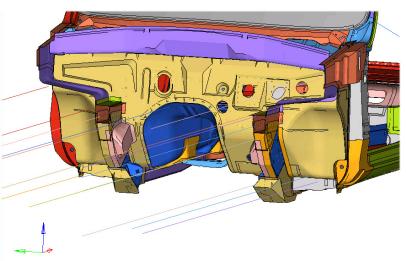
$$\theta_k \in \Theta, k = \overline{1, m}$$

Ограничение по массе

Толщина КЭ

Ограничения по толщине детали

Эргономические и технологические ограничения




## Решение задачи на примере ВАЗ-2123



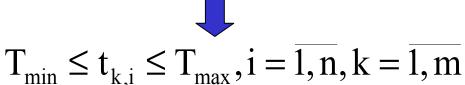
Полноразмерная модель

Приложение расчетных нагрузок к салону





## Чувствительность элементов


| Nº | Название деталей              | Порядковый номер коэффициента<br>чувствительности детали |           |
|----|-------------------------------|----------------------------------------------------------|-----------|
|    |                               | На 30 мс                                                 | На 70 мс. |
| 1  | Боковина                      | 1                                                        | 1         |
| 2  | Панель крыши                  | 2                                                        | 3         |
| 3  | Тоннель пола                  | 3                                                        | 6         |
| 4  | Щиток передка                 | 4                                                        | 7         |
| 5  | Соединитель порога пола       | 5                                                        | 10        |
| 6  | Панель пола передняя левая    | 6                                                        | -         |
| 7  | Панель пола передняя правая   | 7                                                        | -         |
| 8  | Лонжерон пола передний        | 8                                                        | -         |
| 9  | Соединитель лонжерона с полом | 9                                                        | -         |
| 10 | Накладка боковины нижняя      | 10                                                       | 9         |
| 11 | Панель передка боковая        | -                                                        | 2         |
| 12 | Накладка ветровой стойки      | -                                                        | 4         |
| 13 | Усилитель ветровой стойки     | -                                                        | 5         |
| 14 | Усилитель центральной стойки; | -                                                        | 8         |

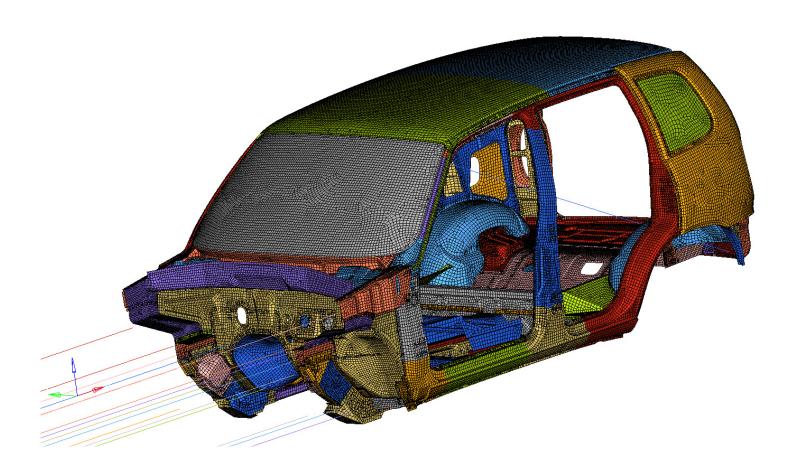


## Формулировка ограничений

$$t_{k,i} = t_k, i = \overline{1,n}$$

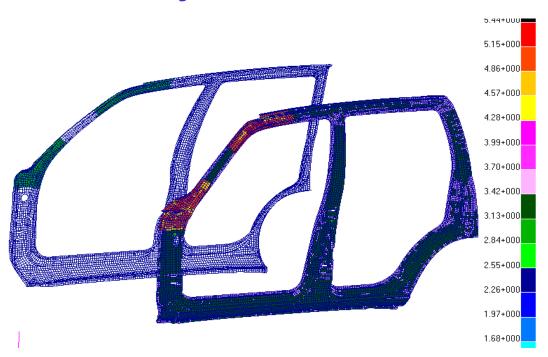
$$T_{min} \le t_k \le T_{max}, k = \overline{1,m}$$




Задача параметрической оптимизации толщин элементов модели

$$t_{ek} = \frac{\sum_{i=1}^{n} (t_{k,i} - t_k)}{n}$$

- Толщина новых усилителей




## Модель для статического расчета





## Результаты оптимизации



Улучшение оценки автомобиля по требованиям EuroNCAP: - с 4.5 до 12 баллов



### Выводы по предлагаемому подходу

- **Использование единой полноразмерной модели автомобиля** как для расчетов на удар, так и для прочностного расчета (практически в два раза сокращает трудоемкость подготовки задачи к решению)
- Исключение расчета на удар из оптимизационного цикла, что позволяет применить для оптимизации конструкции средства решения задач линейной статики и обеспечить решение задачи за несколько десятков часов процессорного времени компьютера на базе Pentium IV
- Сопоставимость качественной и количественной картины поведения конструкции автомобиля при ударе с результатами реальных испытаний и корректность определения нагрузок на каркас салона автомобиля, что недостижимо при использовании упрощенных моделей

OOO Ладуга (www.laduga.ru)

143000, г. Одинцово