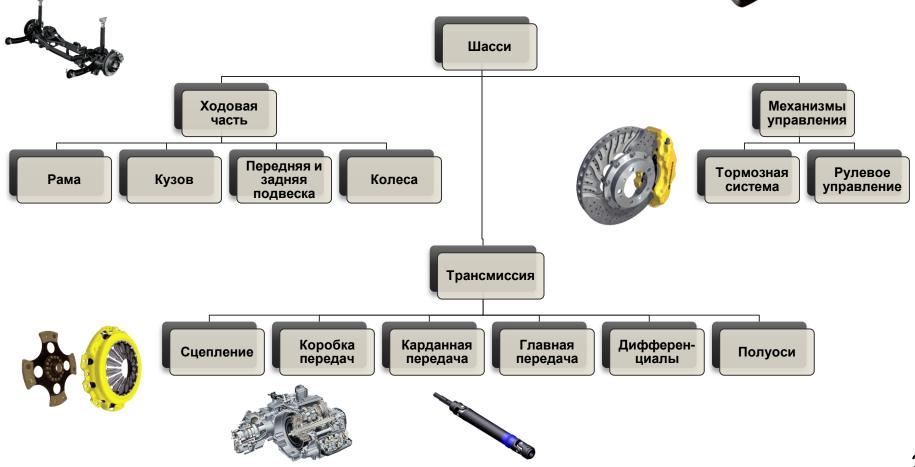
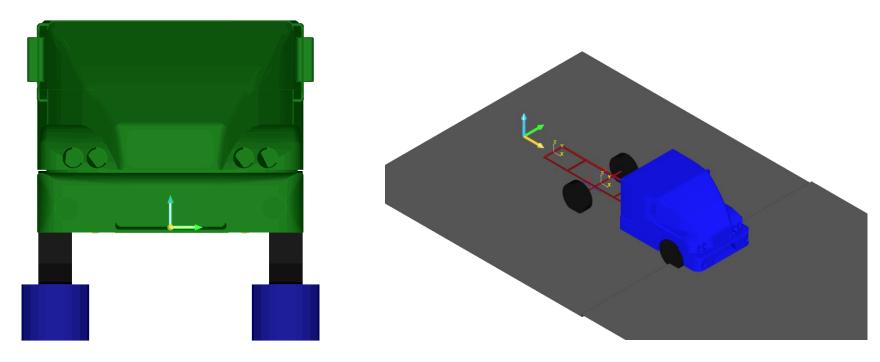


Разработка модуля анализа вибраций шасси автомобиля в ПК PRADIS



Шасси автомобиля

Шасси наземного транспортного средства — собранный комплект агрегатов трансмиссии, агрегатов ходовой части и механизмов управления.

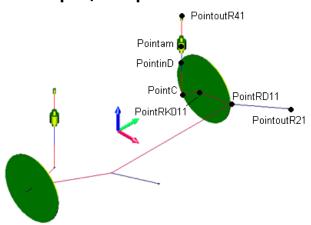


Задачи исследования шасси

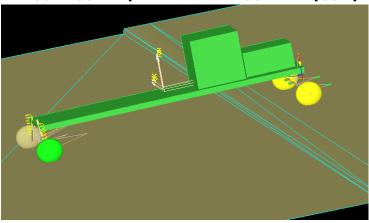
Ключевыми задачами исследования шасси автомобиля являются:

- исследование продольной динамики;
- исследование поперечной динамики;
- испытания на плавность хода;
- исследование нагрузок на кузов.

В рамках данной работы разрабатывался модуль в ПК PRADIS для решения задач плавности хода и нагрузок на кузов.


Предыдущие работы

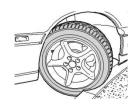
Были разработаны такие математические модели подвесок как:


- зависимая подвеска на четырёх продольных и одной поперечной тягах
- двойные А-рычаги;
- торсионно-рычажная подвеска;
- стойка МакФерсон;
- неразрезная балка на 'клюшках';
- неразрезная балка с продольным А-рычагом;
- рессорная подвеска;
- торсионная подвеска.

Было собранно шасси вездехода Петрович и смоделирован наезд на бордюр.

Торсионно-рычажная подвеска изображение в постпроцессоре

Вездеход Петрович – наезд на бордюр


Постановка задачи

Разработка модуля анализа вибраций шасси автомобиля в ПК PRADIS

Поставленные задачи:

- 1. оформление схем подвесок и шасси автомобилей;
- 2. разработка объектов генераторов дорог разных видов;
- 3. разработка испытательного вибрационного стенда;
- 4. создание шасси грузовика с кабиной и местом водителя;
- 5. разработка стендов для расчета жесткости подвески и шасси в целом, расчета кинематики;
- 6. разработка объектов расчета АЧХ и ФЧХ подвески, спектра сигналов;
- 7. разработка объекта расчета вибрационных характеристик шасси.

Существующие программные решения

ADAMS MSC.Adams.

Наиболее развитый эффективный инструмент виртуального моделирования.

В отдельных отраслях, прежде всего в автомобильной промышленности двигателестроении, MSC.Adams является де-факто стандартом.

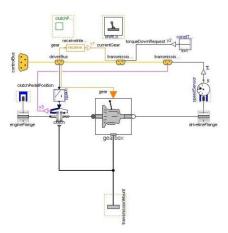
Большое число имеющихся модулей и моделей элементов.

Эффективные средства визуализации результатов моделирования, включая анимацию построение И графиков.

Для моделирования системы автоматическим С регулированием и управлением необходимо использовать отдельные системы (Easy5), это приводит к дополнительным затратам, обучению и тд.

LMS.AVESIM

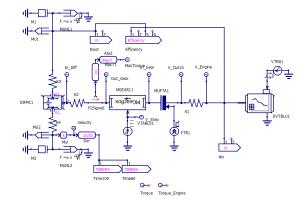
Dymola



SimulationX

Разработана библиотека Vehicle Dynamic. Легкость подключения подсистем немеханической природы.

Схемное решение.



Универсальность по отношению структуре анализируемого объекта и типу физических подсистем, В него входящих Открытость ДЛЯ расширения возможностей.

Схемное решение.

Оформление схем подвесок и шасси автомобилей

В данной части были выполнены следующие работы:

- параметризация добавление внешних параметров к подсхемам;
- установка индикаторов: силы и моменты в элементах подвесок, перемещения, скорости и ускорения особых точек, углы развала и схождения;
- переработка схем на использование шины данных вместо отдельных соединений;
- во всех подсхемах была отрисована локальная система координат;
- создана документация по моделям;
- созданы расчетные случаи: движение шасси по дороге, анализ шасси на вибрационном стенде, анализ шасси на жесткость.

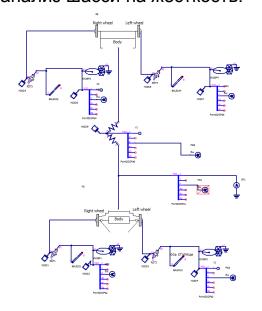


Схема шасси до оформления

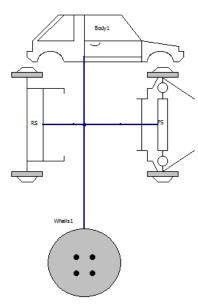
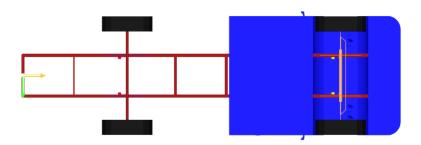
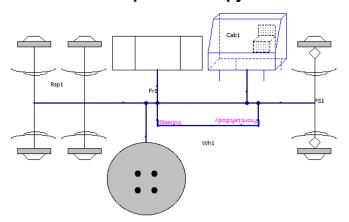


Схема шасси после оформления

ЛСК задней подвески


Схема шасси грузовика

Для задач анализа вибраций были разработаны подсхемы:


- кабины грузовика;
- рамы грузовика;
- сдвоенного заднего моста.

Колеса автомобиля были вынесены в отдельную подсхему. Из этих подсхем были собраны схемы двухосного и трехосного грузовых автомобилей.

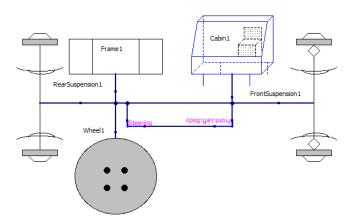

Изображение в постпроцессоре, вид снизу

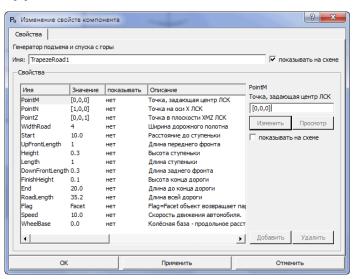
Схема шасси трехосного грузового автомобиля

Схема шасси двухосного грузового автомобиля

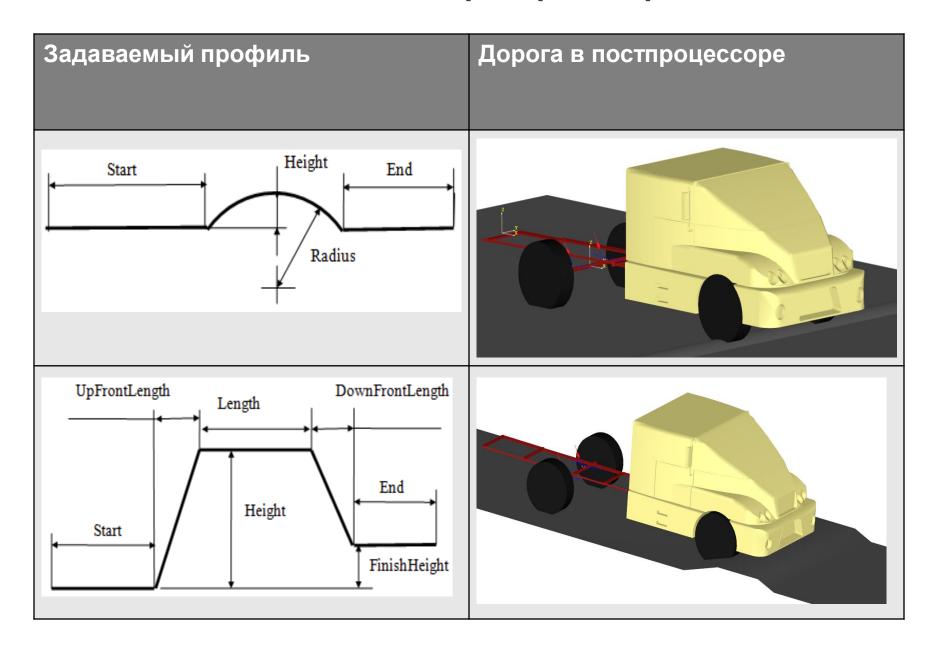
Объекты генераторов дорог

Разработка объекта предполагает создание класса на высокоуровневом языке программирования Python.

Созданы следующие типы дорог:


- бордюр (наезд, съезд);
- прямоугольное препятствие (барьер, яма);
- лежачий полицейский;
- трапециевидное препятствие (подъем-спуск с горы);
- произвольный 2D профиль, задаваемый пользователем;
- случайный профиль по заданному спектру дороги.

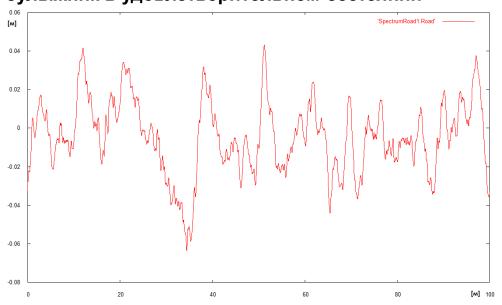
Вид объекта на схеме


TrapezeRoad

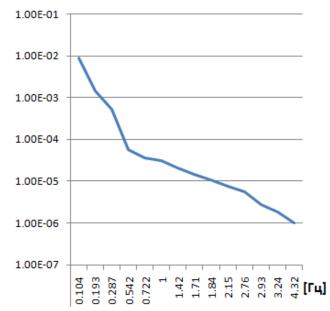
TrapezeRoad1

Диалоговое окно объекта

Объекты генераторов дорог

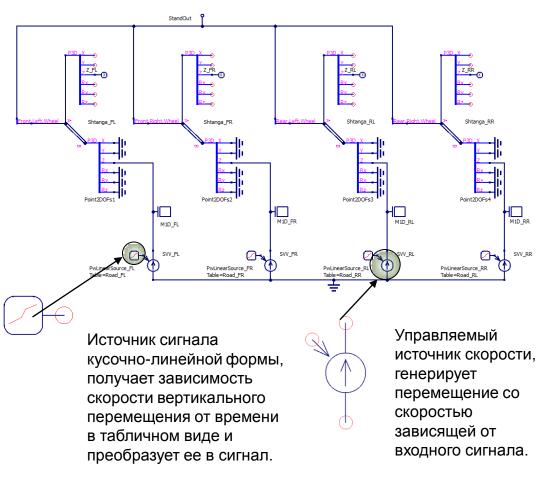

Генератор дороги по спектру

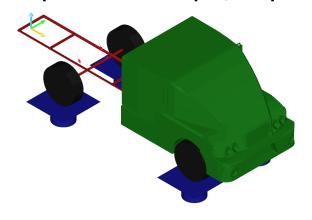
Разложение Райса-Пирсона:
$$x[n\Delta s] = \sum_{m=0}^{M} \sqrt{2S_x(m\Delta\omega)\Delta\omega}\cos[m\Delta\omega n\Delta s + \phi(m\Delta\omega)]$$


Для данного генератора были созданы файлы, задающие спектр таких дорог, как:

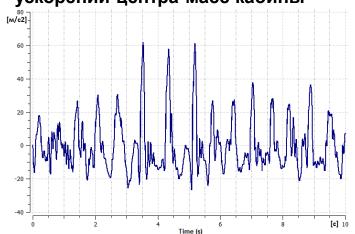
- асфальт в хорошем состоянии;
- асфальт в удовлетворительном состоянии;
- цементобетон на жестком основании;
- булыжник в удовлетворительном состоянии.

Профиль дороги сгенерированный по спектру булыжник в удовлетворительном состоянии


Плотность спектра булыжник в удовлетворительном состоянии


Испытательный вибрационный стенд

Стенд имитирует движение по дороге с заданным профилем и скоростью движения, с помощью вертикального перемещения колес автомобиля во времени. Профиль генерируется генератором дороги.


Эквивалентная схема стенда

Изображение в постпроцессоре

График вертикальных ускорений центра масс кабины

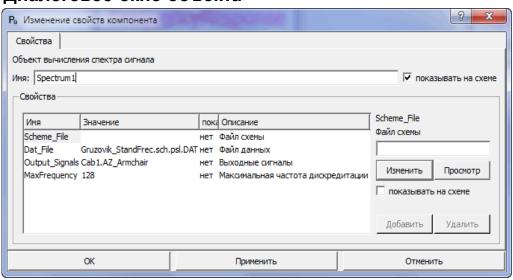
Объект расчета спектра сигнала

Объект рассчитывает спектр сигнала и спектральную плотность. Для расчета спектра используется БПФ.

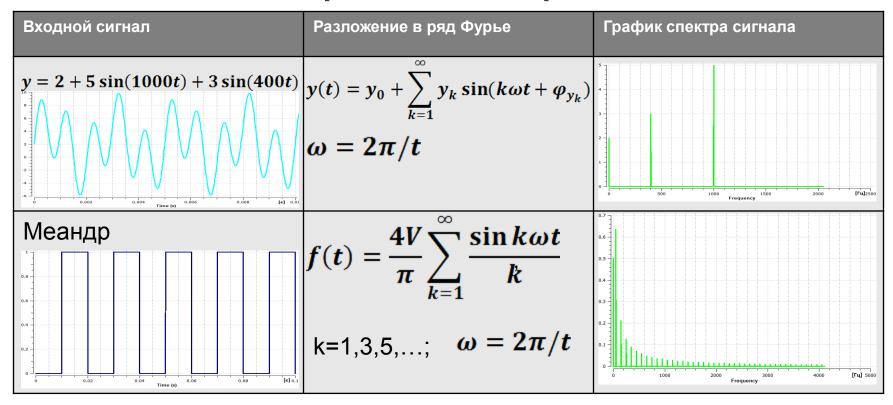
Прямое преобразование Фурье:
$$X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$$
 , $k=0,\dots,N-1$

Обратное преобразование Фурье:

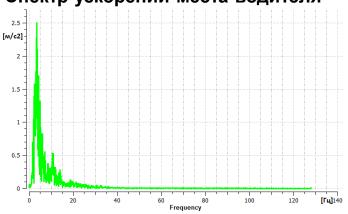
$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{\frac{2\pi i}{N}kn}, n = 0, ..., N-1$$

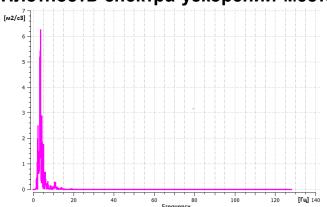

Спектральная плотность: $PSD_x(f) = |X(f)|^2, f = (0, ..., F)$

Вид объекта на схеме

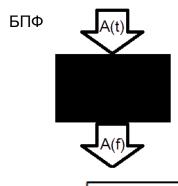

Spectrum

Spectrum1


Диалоговое окно объекта


Объект расчета спектра сигнала

Спектр ускорений места водителя

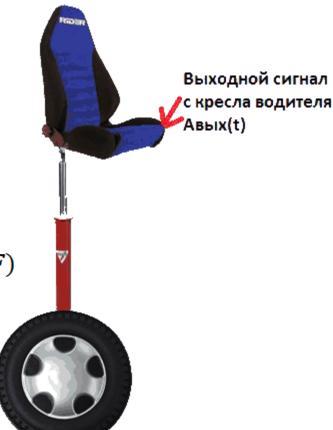

Плотность спектра ускорений места водителя

Объект расчета АЧХ и ФЧХ

- АЧХ важна для анализа шасси автомобиля на плавность хода;
- ФЧХ влияет на поперечную динамику т.е. на чувствительность управляемости шасси.

Прямое преобразование Фурье: $X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$, k=0,... , N-1

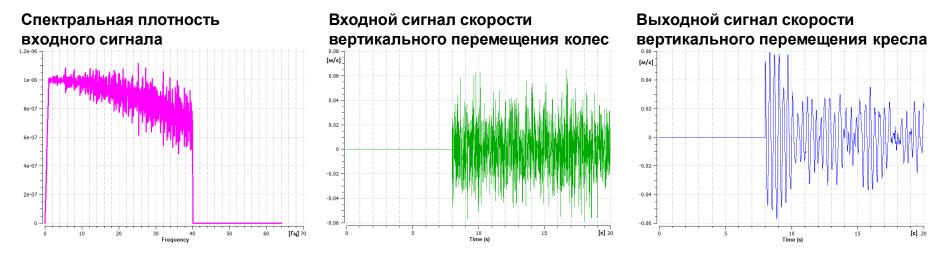


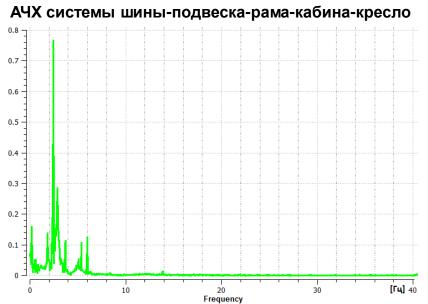

$$A(f) = \sqrt{Re(X(f))^2 + Im(X(f))^2}, f = (0, ..., F)$$

$$\varphi(f) = arctg(Im(X(f))/Re(X(f))), f = (0, ..., F)$$

$$\mathrm{AYX} = \frac{\mathrm{A}_{\mathrm{BLIX.}}(\boldsymbol{f})}{\mathrm{A}_{\mathrm{BX.}}(\boldsymbol{f})}, \boldsymbol{f} = (\boldsymbol{0}, \dots, \boldsymbol{F})$$

ФЧХ =
$$\varphi_{\text{вых.}}(f) - \varphi_{\text{вх.}}(f)$$
, $f = (0, ..., F)$





Объект расчета АЧХ и ФЧХ

При расчете АЧХ на колеса автомобиля подается белый шум в виде скорости с помощью вибрационного стенда. Измеряются скорости штанг стенда и скорости на месте водителя.

Пример расчета АЧХ и ФЧХ для грузового автомобиля на рессорной подвеске:

Объект расчета вибрационных характеристик шасси

Объект рассчитывает следующие характеристики шасси:

• среднее квадратическое отклонение виброускорения $\sigma_{\ddot{\mathbf{z}}}$ и его логарифмический уровень

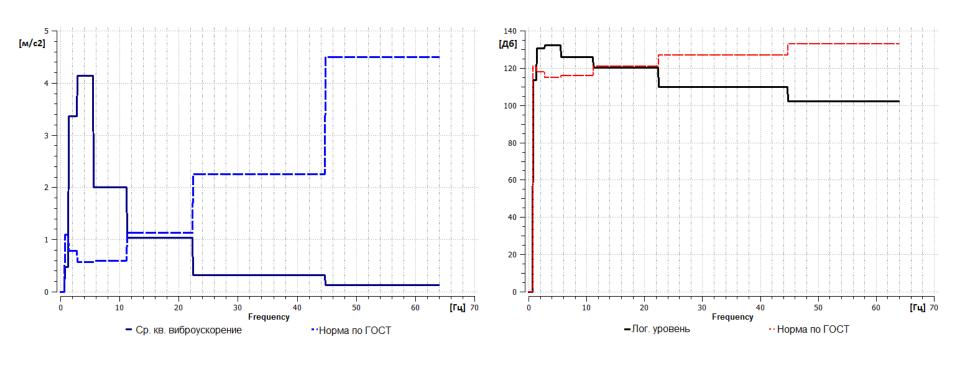
$$L_{\sigma_{\ddot{z}}} = 20 \log \frac{\sigma_{\ddot{z}}}{\sigma_{\ddot{z}0}}$$
 , $\sigma_{\ddot{z}0} = 10^{-6} \, \text{m/c}^2$

• скорректированное по частоте значение среднего квадратического отклонения в заданном

частотном диапазоне
$$\,\sigma_{\ddot{z}} = \sqrt{\sum_{i=1}^n (k_{\ddot{z_i}} \sigma_{\ddot{z_i}})^2}\,$$

и его логарифмический уровень
$$L_{\sigma_{\ddot{z}}} = 10 \log \sum_{i=1}^n 10^{0.1(L_{\sigma_{\ddot{z}1}} + L_{k_{\ddot{z}1}})}$$
 ;

- раздельно-частотная оценка расчет среднего квадратического отклонения виброускорения и его логарифмического уровня в заданных отдельных октавных(третьоктавных) диапазонах;
- выводит санитарные нормы спектральных показателей вибрационной нагрузки по ГОСТ 12.1.012-2004, для возможности сравнения показателей с нормами.


Объект расчета вибрационных характеристик шасси

Блок-схема алгоритма расчета раздельно-частотной характеристики

Объект расчета вибрационных характеристик шасси

На графиках представлена раздельно частотная оценка среднего квадратического виброускорения и его логарифмический уровень, а так же их нормы по ГОСТ.

Номер октавы	1	2	3	4	5	6	7
Диапазон октавы, Гц	0.7-1.4	1.4-2.8	2.8-5.6	5.6-11.2	11.2-22.4	22.4-44.8	44.8-89.6

Из графиков видно, что в данной системе идет превышение норм виброускорения в 2-4 октавах.

Вывод

В ПК Pradis был разработан модуль виртуального анализа шасси автомобиля на вибрации, позволяющий получить широкий спектр характеристик влияющих на плавность хода.

Данный модуль позволит уменьшить материальные и временные затраты как при проектировании нового шасси, так и при доработке уже имеющегося.

Решены следующие задачи:

- оформлены схемы подвесок и шасси автомобилей;
- разработаны объекты генераторов дорог разных видов;
- разработан испытательный вибрационный стенд;
- создано шасси грузовика с кабиной и местом водителя;
- разработаны стенды для расчета жесткости подвески и шасси в целом, расчета кинематики подвески;
- разработаны объекты расчета АЧХ и ФЧХ, спектра сигналов;
- разработаны объекты расчета вибрационных характеристик шасси.